

Outlines

- I. HMA Testing
 - A. Objective
 - B. Data Analysis
 - C. Error Modeling
 - D. Conclusion and Recommendations

II. Soil Testing

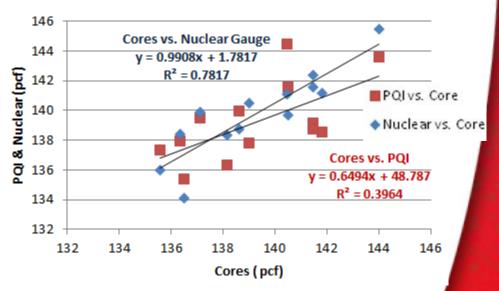
- A. Objective
- B. Literature on Gauges
- C. Data Analysis
- D. Conclusion and Recommendations

M.

I. HMA Testing

Objective

- Main research Objective is to study effectiveness of non-nuclear gauge (PQI 301) with the nuclear gauge (Troxler) and develop methods to improve non-nuclear gauge's performance for QC and QA
 - 13 sites were investigated for two years
 - Data size: 150 cores + more for calibration
 - SP4 and SPR used for the top layer of pavements

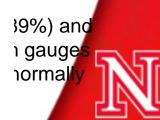


Gauges test results

- Two gauges densities were compared to corresponding core densities
- Average density error with cores:
 - PQI: 1.89 lb/cu.ft
 - Nuclear: 1.07 lb/cu.ft
- Site average (r^2)
 - PQI: $(r = 0.63, r^2 = 0.4)$
 - Nuclear:

$$(r=0.88, r^2 = 0.78)$$

Data Reliability (Core sample vs. MTD)

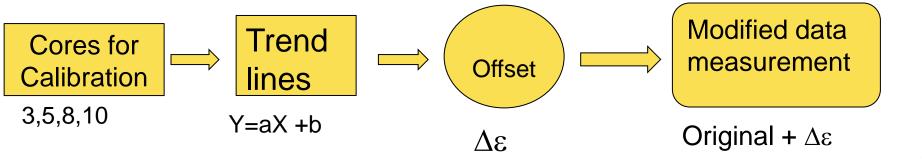

Core samples compared to the MTD(%)

Distribution of when exactly it is appropriate to reasonably accept gauge readings.

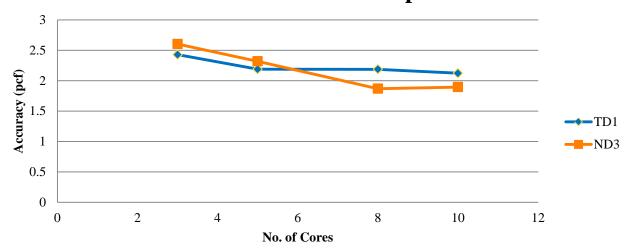
Core sample			Difference with cores	
density compare	Num of			
to the MTD(%)	Sample	% of the core	PQI	Nuclear
86%	4	3%	5.79	5.01
87%	8	6%	4.68	2.96
88%	11	8%	3.48	3.33
89%	11	8%	1.96	2.49
90%	16	12%	0.71	0.77
91%	26	19%	0.78	0.96
92%	21	15%	0.70	0.36
93%	24	17%	1.14	0.63
94%	14	10%	2.02	0.20
95%	4	3%	4.89	0.14

Discovered th ninety three r

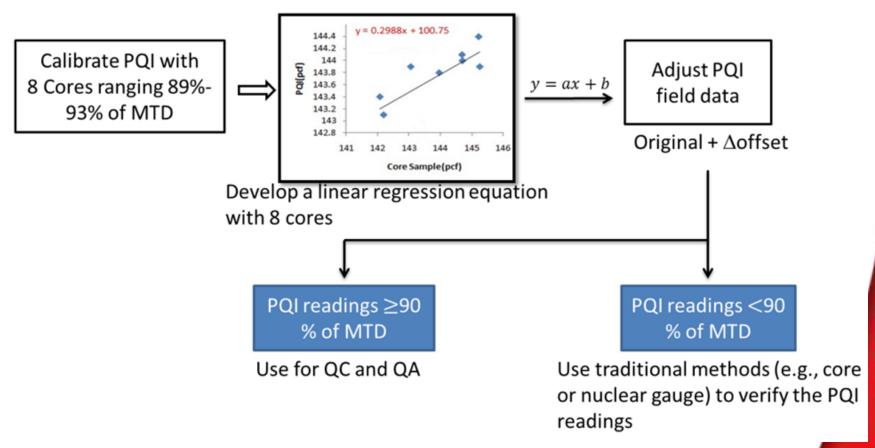
This is important information when can be assur cores are selected to calibrate PQI at distributed be first place


Data Reliability (Both Gauges vs MTD)

PQI and Nuclear densities compare to the MTD(%)


PQI and Nuclear				
gauge density	Num of	Difference	Num of	Difference
compare to the MTD	Sample	PQI-Core	sample	Nuke –Core
%				
86~87%	1	6.32	3	2.56
87~88%	2	8.79	7	4.36
88%~89%	12	0.65	8	0.09
89% ~90%	15	1.52	13	0.19
90~91	45	0.41	27	1.13
91~92%	27	0.67	19	0.41
92~93%	18	0.58	27	1.7
93%~94%	10	0.68	17	0.75
94%~100	9	0.02	18	1.79

Error Modeling to Improve PQI Accuracy using core samples in calibration process



Accuracy comparison with various core numbers used in calibration process

Summary of PQI improvement process

II. Soil Testing

Objective

- Research objective is to investigate effectiveness of (Troxler's Nuclear gauge, Humboldt's EDG, Durham Geo's M+DI and Zorn's LWD) vs. Traditional Methods
- Research team follows:
 - Nuclear Method (ASTM D2922, AASHTO T-310) for Field & Lab tests
 - Known soil curves provided by NDOR
 - The Standard Test Method for Density of Soil in Place by the Drive-Cylinder Method (ASTM D2937-10) – Shelby Tube
 - Standard Proctor Compaction Test
 - Water Content Determination by dry-oven method.

Electrical Density Gauge (EDG)

- Provides density, % compaction, moisture content.
- Needs a soil model to "calibrate" device
- Requires use of mold

Light Weight Deflectometer (LWD)

- Measures Stiffness of the soil
- Used by Mn/DOT for QA

Two Sites

- Highway 370 by Gretna, NE
- Platteview Intersection Site near Plattsmouth, NE
- Total of 118 spots were measured

Test results

	Density		Moisture	
	Nuclear vs.	EDG vs.	Nuclear vs.	EDG vs.
	Standard	Standard	Standard	Standard
Coefficient of Correlation (R)	0.695	0.492	0.90	0.63
Coefficient of Determination (R squared)	0.483	0.24	0.76	0.40

LWD Test Analysis

- Issue in comparison: deflection vs. density
- A test is deemed passed or failed when the measured density is within 95% of the maximum density along with moisture requirements.
- Pass or Fail for LWD using Target value methodology adopted by Mn/DOT

1.48	Р
2.43	F
1.42	Р
2.37	F
1.75	Р
1.57	Р
1.37	Р
1.45	Р
2.18	F
1.36	Р
2.56	F
2.08	F

Standard	Gauge
F	F
F	Р
F	F
Р	Р
Р	Р
F	Р
F	Р
F	F
Р	Р
Р	F
Р	F
Р	Р

Test Status Analysis

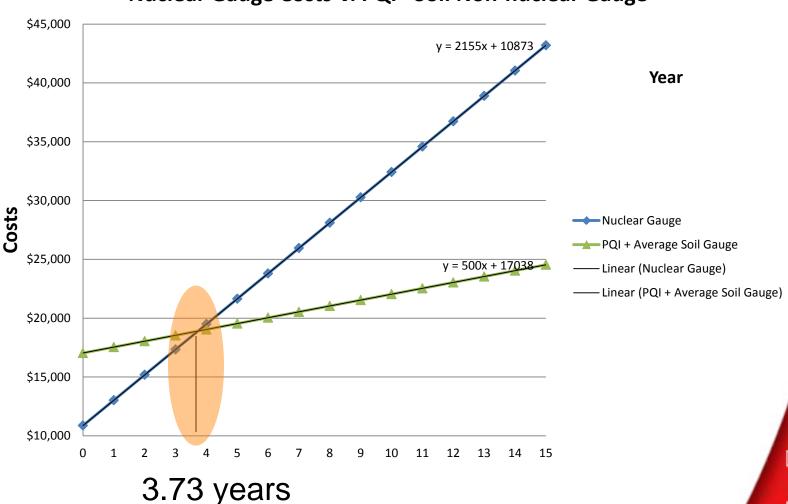
Test Status Relationship with Standard Method	Site 1	Site 2	Average
Nuclear Gauge	83.30%	65%	77%
LWD	48.71%	67.50%	55.08%
EDG	41%	37.50%	39.80%

II. Economics Analysis

Economic Analysis

Nuclear Gauge Costs

	\$6,950
Cost of nuclear gauge	
Radiation safety & Certification	\$750
Class	\$730
Safety training	\$179
HAZMAT certification	\$99
RSO training	\$395
TLD Badge monitoring	\$140/yr
Life of source capsule integrity	15 yr
Maintenance & Re-calibration	\$500/year
Leak test	\$15
Shipping	\$120
Radioactive Materials License	\$1,600
Re-licensing	\$1500/ year
Reciprocity	\$750


Economic Analysis

	Initial Costs	Annual Maintenance
EDG	\$9,000	\$0
LWD	\$8,675	\$0
PQI	\$8,200	\$500

Economic Analysis (Break Even Point)

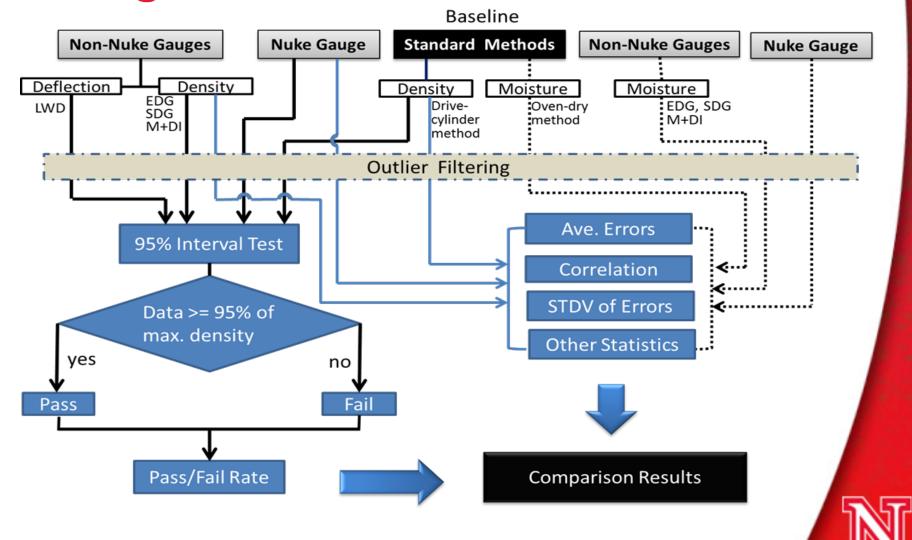
Nuclear Gauge Costs V. PQI+ Soil Non-nuclear Gauge

New non-nuclear technologies

LWD for Asphalt

Troxler PaveTracker Plus

TransTech's PQI 380


TransTech's SDG 200

Framework of Evaluating HMA Gauges

Framework of Evaluating Soil Gauges

Conclusions

- Overall the nuclear gauge shows higher accuracy and correlation than non-nuclear HMA and soil gauges
- Methodologies to improve PQI's performance were developed and presented
- When cores and PQI had higher density (%), statistically PQI had higher accuracy than the nuclear gauge
- The trend line error modeling method showed the accuracy improvement when more cores were used for calibration.
- LWD shows promising test results (further discussed in next section)
- Great cost savings can be expected when non-nuclear method is adopted.

